首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9219篇
  免费   817篇
  国内免费   12篇
  2023年   35篇
  2022年   37篇
  2021年   194篇
  2020年   105篇
  2019年   145篇
  2018年   191篇
  2017年   186篇
  2016年   270篇
  2015年   467篇
  2014年   506篇
  2013年   657篇
  2012年   796篇
  2011年   771篇
  2010年   505篇
  2009年   425篇
  2008年   646篇
  2007年   592篇
  2006年   555篇
  2005年   534篇
  2004年   487篇
  2003年   436篇
  2002年   431篇
  2001年   91篇
  2000年   55篇
  1999年   80篇
  1998年   110篇
  1997年   67篇
  1996年   49篇
  1995年   34篇
  1994年   50篇
  1993年   42篇
  1992年   30篇
  1991年   31篇
  1990年   36篇
  1989年   25篇
  1988年   27篇
  1987年   27篇
  1986年   27篇
  1985年   18篇
  1984年   27篇
  1983年   14篇
  1982年   30篇
  1981年   26篇
  1980年   25篇
  1979年   26篇
  1978年   17篇
  1977年   16篇
  1974年   21篇
  1972年   16篇
  1971年   12篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
Summary The rate of ethanolic fermentation of high gravity wheat mashes bySaccharomyces cerevisiae was increased by nitrogen sources such as ammonium sulfate or arginine. This stimulation was mediated through increased proliferation of cells. Large quantities of proline, however, were excreted by the yeast into the medium when arginine was added as a nutrient supplement. The amount of proline excreted was proportional to the concentration of arginine supplied. Nitrogen sources such as ammonium sulfate or lysine enhanced the production of proline from arginine and its excretion into the medium. Results show that the stimulation of very high gravity fermentation by arginine is not merely through provision of a source of nitrogen but also because it serves as a precursor for the production of proline, a compound which may play a significant role in alleviating the effects of osmotic stress.  相似文献   
72.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
73.

Aim

It is crucial to monitor how the productivity of grasslands varies with its temporal stability for management of these ecosystems. However, identifying the direction of the productivity–stability relationship remains challenging because ecological stability has multiple components that can display neutral, positive or negative covariations. Furthermore, evidence suggests that the direction of the productivity–stability relationship depends on the biotic interactions and abiotic conditions that underlie ecosystem productivity and stability. We decipher the relationships between grassland productivity and two components of its stability in four habitat types with contrasting environments and flora.

Location

France.

Time period

2000–2020.

Major taxa

Grassland plant species.

Methods

We used c. 20,000 vegetation plots spread across French permanent grasslands and remotely sensed vegetation indices to quantify grassland productivity and temporal stability. We decomposed stability into constancy (i.e., temporal invariability) and resistance (i.e., maximum deviation from average) and deciphered the direct and indirect effects of abiotic (namely growing season length and nitrogen input) and biotic (namely plant taxonomic diversity, trait diversity and community-weighted mean traits) factors on productivity–stability relationships using structural equation models.

Results

We found a positive relationship between productivity and constancy and a negative relationship between productivity and resistance in all habitats. Abiotic factors had stronger effects on productivity and stability compared with biotic factors. A longer growing season enhanced grassland productivity and constancy. Nitrogen input had positive and negative effects on grassland productivity and resistance, respectively. Trait values affected the constancy and resistance of grassland more than taxonomic and trait diversity, with effects varying from one habitat to another. Productivity was not related to any biotic factor.

Main conclusions

Our findings reveal how vital it is to consider both the multiple components of stability and the interaction between environment and biodiversity to gain an understanding of the relationships between productivity and stability in real-world ecosystems, which is a crucial step for sustainable grassland management.  相似文献   
74.
Here, we investigate Mid- to Late-Holocene vegetation changes in low-lying coastal areas in Tonga and how changing sea levels and recurrent volcanic eruptions have influenced vegetation dynamics on four islands of the Tongan archipelago (South Pacific). To investigate past vegetation and environmental change at Ngofe Marsh (‘Uta Vava’u), we examined palynomorphs (pollen and spores), charcoal (fire), and sediment characteristics (volcanic activity) from a 6.7-m-long sediment core. Radiocarbon dating indicated the sediments were deposited over the last 7700 years. We integrated the Ngofe Marsh data with similar previously published data from Avai’o’vuna Swamp on Pangaimotu Island, Lotofoa Swamp on Foa Island, and Finemui Swamp on Ha’afeva Island. Plant taxa were categorized as littoral, mangrove, rainforest, successional/ disturbance, and wetland groups, and linear models were used to examine relationships between vegetation, relative sea level change, and volcanic eruptions (tephra). We found that relative sea level change has impacted vegetation on three of the four islands investigated. Volcanic eruptions were not identified as a driver of vegetation change. Rainforest decline does not appear to be driven by sea level changes or volcanic eruptions. From all sites analyzed, vegetation at Finemui Swamp was most sensitive to changes in relative sea level. While vegetation on low-lying Pacific islands is sensitive to changing sea levels, island characteristics, such as area and elevation, are also likely to be important factors that mediate specific island responses to drivers of change.  相似文献   
75.
Calypso bulbosa is a terrestrial orchid that grows in north temperate regions. Like many orchids, the Calypso has ovules that are not fully developed at anthesis. After pollination, the ovule primordia divide several times to produce a nucellar filament which consists of five to six cells. The subterminal cell of the nucellar filament enlarges to become the archesporial cell. Through further enlargement and elongation, the archesporial cell becomes the megasporocyte. An unequal dyad results from the first meiotic division. A triad of one active chalazal megaspore and two inactive micropylar megaspores are the end products of meiotic division. Callose is present in the cell wall of the megaspore destined to degenerate. In the mature embryo sac the number of nuclei is reduced to six when the chalazal nuclei fail to divide after the first mitotic division. The chalazal nuclei join the polar nucleus and the male nucleus near the center of the embryo sac subsequent to fertilization.  相似文献   
76.
In vitro studies on the structurally related mycosporine-like amino acids (MAAs) porphyra-334 and shinorine in aqueous solutions were carried out aiming at their full photochemical and photophysical characterization and expanding the evidence on the assigned UV-photoprotective role of the molecules in vivo. The experiments on shinorine confirmed a high photostability and a poor fluorescence quantum yield, in concordance with previous results on porphyra-334. The estimation of triplet production quantum yields for both MAAs was achieved by laser-flash photolysis measurements. In particular, photosensitization experiments on porphyra-334 support the participation of the triplet state in the photodecomposition mechanism yielding a more precise value of [capital Phi](T). As well, photoacoustic calorimetry experiments allowed the first direct quantification of the nonradiative relaxation pathways of the excited MAAs in solution, corroborating that the vast majority (ca. 97%) of the absorbed energy is promptly delivered to the surroundings as heat, consistently with the low photodecomposition and emission yields observed.  相似文献   
77.
78.
Tumor necrosis factor-alpha converting enzyme (TACE or ADAM17) is a member of the ADAM (a disintegrin and metalloproteinase) family of type I membrane proteins and mediates the ectodomain shedding of various membrane-anchored signaling and adhesion proteins. TACE is synthesized as an inactive zymogen, which is subsequently proteolytically processed to the catalytically active form. We have identified the proprotein-convertases PC7 and furin to be involved in maturation of TACE. This maturation is negatively influenced by the phorbol ester phorbol-12-myristate-13-acetate (PMA), which decreases the cellular amount of the mature form of TACE in PMA-treated HEK293 and SH-SY5Y cells. Furthermore, we found that stimulation of protein kinase C or protein kinase A signaling pathways did not influence long-term degradation of mature TACE. Interestingly, PMA treatment of furin-deficient LoVo cells did not affect the degradation of mature TACE. By examination of furin reconstituted LoVo cells we were able to exclude the possibility that PMA modulates furin activity. Moreover, the PMA dependent decrease of the mature enzyme form is specific for TACE, as the amount of mature ADAM10 was unaffected in PMA-treated HEK293 and SH-SY5Y cells. Our results indicate that the activation of TACE by the proprotein-convertases PC7 and furin is very similar to the maturation of ADAM10 although there is a significant difference in the cellular stability of the mature enzyme forms after phorbol ester treatment.  相似文献   
79.
Based on imperfect data and theory, agencies such as the United States Environmental Protection Agency (USEPA) currently derive “reference doses” (RfDs) to guide risk managers charged with ensuring that human exposures to chemicals are below population thresholds. The RfD for a chemical is typically reported as a single number, even though it is widely acknowledged that there are significant uncertainties inherent in the derivation of this number.

In this article, the authors propose a probabilistic alternative to the EPA's method that expresses the human population threshold as a probability distribution of values (rather than a single RfD value), taking into account the major sources of scientific uncertainty in such estimates. The approach is illustrated using much of the same data that USEPA uses to justify their current RfD procedure.

Like the EPA's approach, our approach recognizes the four key extrapolations that are necessary to define the human population threshold based on animal data: animal to human, human heterogeneity, LOAEL to NOAEL, and subchronic to chronic. Rather than using available data to define point estimates of “uncertainty factors” for these extrapolations, the proposed approach uses available data to define a probability distribution of adjustment factors. These initial characterizations of uncertainty can then be refined when more robust or specific data become available for a particular chemical or class of chemicals.

Quantitative characterization of uncertainty in noncancer risk assessment will be useful to risk managers who face complex trade-offs between control costs and protection of public health. The new approach can help decision-makers understand how much extra control cost must be expended to achieve a specified increase in confidence that the human population threshold is not being exceeded.  相似文献   

80.
The importance of the acarine predator, Zetzellia mali, in the control of phytophagous mites in apple orchards is not well understood. Zetzellia mali tends to prefer the eriophyid, Aculus schlechtendali, over the economically more significant tetranychid, Panonychus ulmi, but quite a wide range of preference values have been reported in the literature. In sets of laboratory choice trials, we determined that prey preference of this predator varies with the relative but not absolute density of its prey. We attempt to explain these results in terms of behavioural mechanisms and discuss the potential implications of our results for the effectiveness of Z. mali in the biological control of phytophagous mites in apple orchards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号